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Abstract

Given a set of labeled instances on a source domain, unsupervised domain adap-
tation (UDA) aims to learn a prediction function to classify instances in a shifted,
target domain. Depending on the degrees of overlap between the label spaces of
the two domains, the problem variants of UDA range from the classical, closed
set setting to the most general — arguably the most challenging — setting of uni-
versal domain adaptation. In this work, we argue that no matter what the degree
of label space overlap, the problem nature of UDA remains unchanged when it
comes to learning the intrinsic discrimination of target data in an unsupervised
manner, regularized by the labeled discrimination of source data in an unknown
but shared label space, and we argue that this regularization should not overwhelm
the learning of a target prediction function. To this end, we propose a simple
but strong baseline of neighborhooD-prEserved deep discriminaTivE ClusTering
(DETECT ) for UDA, whose design complies with the above learning principles.
We conduct thorough experiments that verify the efficacy of constituent compo-
nents in DETECT across a range of label space overlaps. Such a simple baseline
also outperforms all existing methods on four UDA benchmarks.

1 Introduction

Unsupervised domain adaptation (UDA) aims to learn a prediction function for the unlabeled data
of a target domain, given labeled data in a shifted, source domain. Recently, problem variants of
UDA have been introduced depending on the degree of overlap between the label spaces of the two
domains. Specifically, the label space of the target data can be assumed as the same as that of the
source data, a subset of the source data or a superset of the source data. Or it can be assumed to have
a known overlap with the source data. These options respectively give rise to closed set [11, 27],
partial [6, 48] and open set [38, 4] UDAs. You et al. [47] describe these UDA variants with a unified
Jaccard distance, which measures the degree of overlap between the label spaces of both domains,
and they introduce the task of universal domain adaptation.

The task of universal domain adaptation is challenging since we have no prior knowledge about
the relationship between the label spaces of both domains, and this applies to general applications
in practice. In universal domain adaptation, given labeled source data, for any related target data
with different degrees of overlap in the label space, we aim to classify target data correctly if it
belongs to overlapped classes across domains, else we reject it as an unknown class. As illustrated
in [47], the seminal methods [11, 29, 48, 7, 4, 38] proposed for the closed set, partial and open set
UDAs do not work well on universal domain adaptation, so You et al. [47] introduce a sample-level
weighting mechanism to promote the feature alignment of overlapped classes across domains via the
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seminal adversarial UDA method [11], and they reject a target sample as an unknown class using a
pre-defined threshold.

We contribute in this paper a novel perspective to the challenging universal domain adaptation prob-
lem. We argue that no matter what the degree of the label space overlap, the problem nature of
UDA remains unchanged when it comes to learning the intrinsic discrimination of target data in an
unsupervised manner, regularized by the labeled discrimination of source data in an unknown but
shared label space, and we argue that this regularization should not overwhelm the learning of a
target prediction function. To this end, we propose a simple but strong baseline of neighborhooD-
prEserved deep discriminaTivE ClusTering (DETECT ) for UDA, whose design complies with the
above problem nature. Concretely, we learn a model using deep discriminative clustering [45] on a
data subset of the target domain whose labels (possibly) belong to the overlapped label space across
domains. The target subset is achieved by filtering out target samples with high entropy as outlier-
s (i.e. an unknown class), empowered by the existing technique of the out-of-distribution (OOD)
detector [23]. Via deep discriminative clustering, the intrinsic discrimination of target data whose
labels belong to the shared label space can be investigated and largely preserved. To further reduce
contamination of the intrinsic discrimination of the entire target data, we adopt the neighborhood-
preserved feature embedding [17, 5], which encourages samples close in the image space to maintain
similar feature representations during the embedding learning. An additional regularization is im-
posed by training the model with labeled source data in a supervised manner, which provides the
prior knowledge of category information. In Sec. 5, we investigate the efficacy of constituent com-
ponents in DETECT across a range of label space overlaps, and we present how such a simple
baseline outperforms all existing methods in universal domain adaptation.

2 Related Work

In this section, we briefly review the UDA variants of the closed set, partial and open set, as well
as universal domain adaptation, and their representative methods. We also review the technique of
deep discriminative clustering, which sets up the technological basis of our DETECT .

Closed Set Domain Adaptation The label spaces of the source and target domains are assumed to be
the same in the closed set domain adaptation. Classic UDA theories [3, 2, 31] suggest that the target
risk can be minimized by bounding the source risk and the distribution discrepancy across domains,
which motivates many methods [28, 44, 27, 39, 22, 11, 43, 37, 49] targeted at learning domain-
invariant feature representations. Apart from these methods, others based on pseudo labels [36, 46,
21] or other semi-supervised learning techniques [15, 40] have also been widely studied. Recently,
state-of-the-art results have been achieved by clustering-based UDA methods [9, 42], which adopt
technique approaches that are similar to ours. The unrealistic assumption of a shared label space
across domains, however, limits their practical applications.

Partial Domain Adaptation The task of partial domain adaptation assumes that the label space
of the source domain subsumes that of the target domain, which partially relaxes the shared label
space assumption of closed set domain adaptation. Current methods of partial domain adaptation
typically adopt either a class-level [7], an instance-level [48, 6] or both a class- and instance-level
[8] weighting mechanism for source data to filter the source samples whose labels are not present in
the target data, after which they learn domain-invariant feature representations with samples of the
domain-shared classes. Although the shared label space assumption is relaxed, the new assumption
that the label space of target data is a subset of the source data also limits its application.

Open Set Domain Adaptation There are two task settings for open set domain adaptation with one
slight difference. The first one proposed by Busto et al. [4] assumes that both source and target
domains enjoy their private classes, and that the overlapped classes are known in advance. To solve
this problem, they propose an Assign-and-Transform-Iteratively (ATI) algorithm to assign target
samples to source classes, and they make a final classification with SVM classifiers. Another task
setting of open set domain adaptation proposed by Saito et al. [38] assumes that the data of source
private classes are not required, and they reject the data of target private classes as an unknown class
with adversarial training. Both task settings require prior knowledge about the overlapped classes,
which usually does not hold in practice.

Universal Domain Adaptation The universal domain adaptation proposed by [47] assumes that the
overlapped classes between source and target domains are unknown, which thoroughly relaxes the
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unrealistic assumptions about the label spaces across domains. To solve this problem, You et al. [47]
propose the universal adaptation network (UAN) by jointly training an adversarial domain adapta-
tion network and a progressive instance-level weighting scheme, which quantifies the transferability
of both source and target samples. More recently, Lifshitz et al. [26] propose a sample selection
approach through the usage of pseudo-labels and a batch diversity loss, and in [35], a combination
of self-supervised training and domain-specific batch normalization is adopted. Unlike these meth-
ods, we investigate the problem nature of UDA and correspondingly propose a deep discriminative
clustering-based method. As illustrated in Sec. 5, empirical evidence on four benchmark datasets
verifies the efficacy of our method across a range of label space overlaps.

Deep Discriminative Clustering Discriminative clustering aims to learn decision boundaries to
represent distinctions between categories in an unsupervised manner [12]. By borrowing the power-
ful feature representation of a deep network, deep discriminative clustering models [20, 41, 45, 10]
have been proposed and show promising performance. Among these approaches, a simple technique
is proposed in [45] by introducing auxiliary target distributions and then minimizing the Kullback-
Leibler (KL) divergence between these auxiliary targets and the posteriors of a discriminative deep
networks classifier. Following [45], many methods [10, 14] have been proposed by using similar
strategies. In this paper, we simply borrow the ideas of these works and propose a strong baseline
of DETECT to address the task for universal domain adaptation.

3 Problem Definition

Given a set of labeled data {(xs
i , y

s
i )}

ns
i=1 on a source domain X s ×Ys, and unlabeled data {xt

i}
nt
i=1

on a target domain X t×Yt, unsupervised domain adaptation (UDA) aims to learn a prediction func-
tion h : X t → Yt by utilizing the provided, labeled source data. For the problem of classification,
we assume Ys = {1, ...,K}. Depending on different settings, the label space of Yt can be assumed
to be the same as Ys, a subset of Ys or a superset of Ys. Or it could have a known overlap with Ys.
These assumptions respectively give rise to the problem variants of closed set [11, 27], partial [6, 48]
and open set [38, 4] UDAs. This spectrum of UDA variants can be more generally described using
a measure of intersection-over-union (IOU) as ξ = |Ys∩Yt|

|Ys∪Yt| ∈ [0, 1] [47]; the right extreme of ξ = 1

gives the closed set UDA, and when label spaces of the two domains are completely irrelevant, we
have the left extreme of ξ = 0. In this work, we focus on the most general — arguably the most
challenging — UDA setting where the IOU measure ξ is unknown. This setting is termed as uni-
versal [47] or open-partial [35] domain adaptation in existing literature. To make it more precise,
we term the problem as ξ-UDA to show respect to both Unsupervised [11, 27] and Universal [47]
Domain Adaptation.

Denote Yt/s = {y|y ∈ Yt, y /∈ Ys} as the label subset of Yt that excludes labels in Ys, and denote
the domain-shared label subset as Yst = Ys∩Yt. Since nothing is known about the internal structure
of Yt/s, the learning objective h : X t → Yt of ξ-UDA can be relaxed as h : X t → Yst ∪ {yt/s},
where yt/s denotes the label of the (super-)class that contains all labels in Yt/s. Considering that
Yst is unknown but |Yst| ≤ |Ys| = K, one can choose to implement the function h as a two-level,
hierarchical classification of h1 : X t → {0, 1} and h2 : X t → {0, 1}K ; the binary h1(x

t) classifies
any xt ∈ X t either as the label yt/s or any label in Ys, and when the latter is the case, h2(x

t)
further classifies it potentially into a label index of Yst ⊆ Ys. One can alternatively learn h2 alone,
and use it as an out-of-distribution (OOD) detector [18] to identify any xt whose label is yt/s. We
choose to learn h2 alone in this work, and implement it as a K-way classification network.

4 The Proposed Method

We present our proposed method for ξ-UDA in this section. We first note that no matter what the
values of ξ are, the problem nature remains unchanged, i.e.:

• to learn the intrinsic discrimination of {xt
i}

nt
i=1 in an unsupervised manner, regularized by

labeled discrimination of {(xs
i , y

s
i )}

ns
i=1 in the unknown Yst;

• considering that distribution shift is deemed to exist between the two domains, care should
be taken when imposing regularization so that the intrinsic structure of target discrimination
is not overwhelmed by that of the labeled source discrimination.
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To this end, we propose a simple but strong baseline for ξ-UDA, based on the above principles
that comply with the problem nature. Simply put, our method learns h2 for deep discriminative
clustering on those instances of {xt} whose labels belong to Yst, where neighborhood-preserved
embedding [17] is used to maintain the intrinsic structure of the target data; regularization from the
source data is imposed simply by training the same h2 using {(xs

i , y
s
i )}

ns
i=1 in a supervised manner,

where we borrow the existing technique of OOD detection [23] to improve the identification of {xt},
whose labels are yt/s. We thus term this method as neighborhooD-prEserved deep discriminaTivE
ClusTering (DETECT ). Experiments in Sec. 5 show that this simple baseline outperforms all
existing methods for ξ-UDA.

We practically implement h2 as two cascaded functions of φϑ : X → Rd and fθ : Rd → [0, 1]K

in a deep network, where φϑ learns the feature embedding, fθ is a softmax classifier and (ϑ, θ)
denotes the network parameters, collectively. For any instance x, we write its feature embedding as
z = φϑ(x) ∈ Rd and its network output as p = fθ(z) ∈ [0, 1]K . We also write the kth element of
p as pk. We omit the superscript s or t in this notation, since the network processes source or target
instances equally. We present the specifics of DETECT as follows.

Neighborhood-Preserved Deep Discriminative Clustering

Given the relaxed ξ-UDA task of h : X t → Yst ∪ {yt/s}, which is practically implemented as the
prediction function h2 : X t → {0, 1}K , our discovery of the intrinsic target structure focuses on
those {xt} whose labels are in Yst ⊆ Ys, while treating those with the label yt/s simply as OOD
outliers. Assume for now that our choice of deep model h2 = fθ ◦ φϑ serves as a good OOD
detector; we then identify any xt ∈ X t either as inliers or outliers based on the following indicator

I(xt) =

{
1, H(xt) < τ log(K),

0, otherwise,
(1)

where H(xt) = −
∑K

k=1 p
t
k log(p

t
k) measures the entropy of the probability vector pt = fθ ◦

φϑ(x
t), and τ ∈ [0, 1] is a threshold parameter. We discuss how to train fθ ◦ φϑ as a good OOD

detector shortly. To cluster the target instances {xt
i}

nt
i=1, we follow the framework of [45, 10], and

introduce for the collection P t = {I(xt
i) · pt

i}
nt
i=1 an auxiliary Qt = {I(xt

i) · qt
i}

nt
i=1. Given that

the KL divergence between P t and Qt is defined as

KL(Qt||P t) =
1

N

nt∑
i=1

K∑
k=1

I(xt
i) · qti,k log

qti,k
pti,k

with N =

nt∑
i=1

I(xt
i), (2)

the minimization of (2) is potentially able to cluster {xt
i}

nt
i=1 via distribution matching when the

auxiliary Qt captures prior knowledge about the intrinsic, and ideally discriminative, structure of
{xt

i}
nt
i=1. We inject such prior knowledge into Qt based on two classical ideas. The first one

directly leverages the UDA setting, and pre-trains fθ ◦ φϑ using the labeled {(xs
i , y

s
i )}

ns
i=1, which

enables the trained model to produce pseudo labels for {xt
i}

nt
i=1; we use these pseudo labels to

initialize individual {qt ∈ Qt}. Due to the data and label mismatch between {(xs
i , y

s
i )}

ns
i=1 and

{xt
i}

nt
i=1, pseudo labels are not guaranteed to be reliable. As compensation, our second idea follows

classical clustering and semi-supervised learning [12], and it promotes the balance of assignments
among the K clusters for individual {qt ∈ Qt}; technically, we minimize KL(ϱt||ut), where
ϱt = 1

N

∑nt

i=1 I(x
t
i) · qt

i is the empirical probability of target assignments over the K clusters, and
where ut is a uniform distribution. Combining KL(ϱt||ut) with (2) gives the first component of
our learning objective of DETECT for the ClusTering of target data

LCT (ϑ, θ; {xt
i}

nt
i=1) = KL(Qt||P t) +KL(ϱt||ut). (3)

To reduce contamination of the intrinsic target discrimination, DETECT implements the second
learning principle of ξ-UDA based on the classical idea of neighborhooD-prEserved feature embed-
ding [17, 5]

LDE(ϑ, θ; {xt
i}

nt
i=1) =

1

2

nt∑
i,j=1

wt
ij · ∥zt

i − zt
j∥2 = Tr(Zt⊤LtZt), (4)

where W t denotes the adjacency matrix of the 2-nearest neighbor graph whose edge weight wt
ij

is computed as wt
ij = e−∥zt

i−zt
j∥

2/d in the initial training epoch, Lt is the graph Laplacian [5]
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built from W t, and Zt = [zt
1; ...; z

t
nt
] = [φϑ(x

t
1); . . . ;φϑ(x

t
nt
)] ∈ Rnt×d contains the feature

embedding of target instances. By minimizing (4), features learned by the embedding function φϑ

preserve the intrinsic neighborhood structure in the ambient space of X t.

Source Regularization in the Shared Label Space

Given the choice of deep model h2 = fθ ◦ φϑ, regularization from the labeled {(xs
i , y

s
i )}

ns
i=1 is

straightforward to enforce using cross-entropy loss CE(ps, δys) = − log psys , where δys ∈ [0, 1]K

denotes a one-hot vector with the only entry at the index ys. To make h2 as a good OOD detector
as well, we use a common strategy in existing OOD research [23] that regularizes the training of the
deep model using an auxiliary set of unlabeled data {(x′

i)}ni=1; note that {(x′
i)}ni=1 is irrelevant to

both {(xs
i , y

s
i )}

ns
i=1 and {(xt

i)}
nt
i=1. This gives the regularizer of DETECT for deep discriminaTivE

training

RTE(ϑ, θ; {xs
i , y

s
i }

ns
i=1, {x

′
i}ni=1) =

1

ns

ns∑
i=1

CE(ps
i , δys

i
) + γROOD(ϑ, θ; {x′

i}ni=1), (5)

with

ROOD(ϑ, θ; {x′
i}ni=1) = − 1

n

n∑
i=1

K∑
k=1

1

K
log p′i,k, (6)

where γ is a penalty parameter, p′k is the kth entry of p′, and p′ = fθ ◦ φϑ(x
′); the regularizer

ROOD encourages the learned fθ ◦ φϑ to give high values of entropy H(x′) for any OOD instance
x′. Note that the alternative OOD manner of temperature scaling [19, 25] is used in [47].

Learning and Inference

Combining the terms (3), (4), and (5) gives the learning objective of our proposed DETECT

LDETECT (ϑ, θ) = αLDE +RTE + βLCT , (7)

where α and β are penalty parameters. The training of the deep model fθ ◦φϑ is easy to implement
using stochastic gradient descent (SGD), where the graph Laplacian in (4) is also computed for
instances in each mini-batch. Given a learned fθ ◦ φϑ, we label a target instance xt by

ŷt =

{
argmaxk[f(φ(x

t))]k, H(xt) < τ log(K),

yt/s, otherwise.
(8)

5 Experiment

We evaluate our DETECT on four benchmark datasets under the ξ-UDA setting with different
values of ξ, and we investigate its components thoroughly. We begin by introducing the datasets and
the learning setups that are used in our experiments in the following.

The Office-31 dataset [34] contains 31 classes from three visually distinct domains: Amazon (A),
DSLR (D) and Webcam (W). We follow the class split setting of [47] by adopting the 10 common
classes between Office-31 and Caltech-256 [13] as Yst, and the next sets of 10 and 11 classes, in
alphabetical order, as Ys/t and Yt/s, respectively. ImageNet-Caltech is built from ImageNet-1K
(Im) [33] with 1000 classes and Caltech-256 (Cal) [13] with 256 classes. Following [47, 26], we
adopt the 84 classes shared by both domains as Yst and use their private classes as their private
label sets, respectively. VisDA2017 [32] includes a source domain of synthetic images and a target
domain of real-world images, focusing on a special transfer learning setting of simulation to the
real world. There are 12 classes in this dataset. Following [47], in alphabetical order, we adopt the
first 6 classes as Yst, the next 3 classes as Ys/t and the rest as Yt/s. ImageCLEF-DA [1] consists
of four domains, which are randomly selected from Caltech-256 (C), ImageNet ILSVRC2012 (I),
Pascal VOC 2012 (P), and Bing (B). Each domain equally contains 600 images of 12 classes. In
alphabetical order, we adopt the first 6 classes as Yst, the next 3 classes as Ys/t and the rest as Yt/s.

Following [47], we adopt the average class accuracy (AA) as the evaluation metric for ξ-UDA, where
the results are calculated by averaging the accuracy over all classes, including the (super-)class yt/s.
In our ablation studies, we also report the overall accuracy (OA), i.e. the averaged accuracy of all
target samples, as a supplement. We empirically set α as 0.01 in all experiments. For the value of
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LCT LDE ROOD A2W D2W W2D A2D D2A W2A Avg.
- - - 80.34 95.38 97.02 85.11 82.92 82.25 87.17
X - - 87.89 94.98 94.64 92.80 91.01 90.07 91.90
X X - 93.00 95.29 96.24 93.13 91.33 90.88 93.31
X X X 94.43 96.87 96.31 94.69 91.08 92.06 94.24

Table 1: Ablation experiments on the Office-31 dataset with the evaluation metric of AA (%).

LCT LDE ROOD A2W D2W W2D A2D D2A W2A Avg.
- - - 74.41 87.94 84.04 72.19 80.66 76.43 79.28
X - - 72.28 82.74 79.82 75.20 76.29 72.21 76.42
X X - 82.56 86.76 85.14 89.76 77.68 75.33 82.87
X X X 86.29 92.5 83.43 90.96 83.88 81.31 86.40

Table 2: Ablation experiments on the Office-31 dataset with the evaluation metric of OA (%).

β, we set it to 0.5 in most cases and 1.0 to balance the target effect if the size of the target data
is too small. We set γ to 0.5 and 0.01, respectively, for the small-scale datasets of Office-31 and
ImageCLEF-DA and the large-scale datasets of VisDA2017 and ImageNet-Caltech. The threshold
τ is fixed to 0.5 in all experiments, and this is investigated in Sec. 5.1. We adopt the photo domain
images (containing 1670 natural images in total) in PACS [24] as the auxiliary dataset {(x′

i)}ni=1 in
ROOD for all our experiments. We implement our DETECT based on PyTorch with a pre-trained
ResNet-50 [16] as the backbone network. Other implementation details are the same as those in
[47].

5.1 Ablation Studies and Analysis

Ablation Studies We conduct ablation studies on the Office-31 dataset to investigate the effects
of components (i.e. the deep discriminative clustering object LCT (3), neighborhood-preserved
embedding term LDE (4) and auxiliary regularizer ROOD (6)) in detail. The results of AA and OA
are illustrated in Tab. 1 and Tab. 2, respectively. We start with the baseline model trained with
source data only, which is termed “Source Only”. The AA increases and the OA decreases when
we add LCT to the baseline of Source Only, indicating that the objective of deep discriminative
clustering benefits the recognition of target samples belonging to Yst and degrades the detection
of samples of the unknown categories (i.e. Yt/s). By taking LDE into the overall objective, we
improve the results significantly, especially the results of OA, verifying the importance and necessity
of the neighborhood-preserved embedding objective in the clustering procedure, which is intuitively
illustrated in Fig. 1(b) and Fig. 2. Specifically, the objective of LDE successfully maintains the
intrinsic discrimination of target data and prevents the target samples of unknown categories Yt/s

from aligning to the domain-shared samples of Yst in the learned feature space. This contributes to
category recognition, especially for unknown categories. The auxiliary regularizer ROOD further
improves the results of both OA and AA, leading to the best performance.

Convergence Performance We illustrate the convergence performance of our DETECT with the
evaluation metrics of AA and OA in Fig. 1(a) and Fig. 1(b), respectively. Compared to AA, the
results of OA are more sensitive to the accuracy of target unknown categories, since samples of target
unknown categories construct a large portion of the target domain in popular datasets. The OA of
the Source Only baseline degrades significantly as the training proceeds, since the network becomes
over-confident of its output, and therefore, increasingly more target samples of unknown classes are
misclassified as domain shared categories. Our DETECT without LDE converges very fast and
reaches a higher AA depending on deep discriminative clustering, but it converges to a lower OA
than Source Only because the intrinsic target discrimination of unknown categories is contaminated.
After including LDE , the proposed DETECT significantly improves the convergence performance
and converges stably to the highest accuracy levels for both AA and OA, certifying that it can be
trained efficiently to learn the intrinsic discrimination of the entire target data.

Feature Visualization We visualize in Figs. 2(a)-2(d) the feature representations extracted by
Source Only, UAN [47] and DETECT without (w/o) LDE , as well as DETECT on the A to
W task of the Office-31 dataset with t-SNE [30]. Compared to Source Only and UAN [47], our
DETECT learns more discriminative representations for the target samples belonging to Yst, and
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Figure 1: (a)-(b): Convergence performance on the task of A to D according to the evaluation metrics
of AA and OA, respectively. (c): Performance w.r.t. the threshold τ in the task of A to D.

(a) Source Only (b) UAN [47] (c) DETECT w/o LDE (d) DETECT

Figure 2: t-SNE visualization of target features in the task of A to W. Red dots represent target
samples that enjoy shared labels with the source domain (i.e. Yst) while black dots are samples
from unknown classes (i.e. Yt/s). (Best viewed in color)
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Figure 3: Average class accuracy (%) of different ξ-UDA settings on the task of A to W. The results
of UAN [47] are reproduced with its public code.

it distinguishes the target samples of Yst clearly from those of Yt/s. In addition, we can observe
from the Figs. 2(c) and 2(d) that the introduced neighborhood-preserved embedding objective LDE

contributes to distinguishing between target samples of Yst and Yt/s in the feature space, verifying
its efficacy.

Threshold Sensitivity We explore the sensitivity of our DETECT to the threshold τ on the task
of A to D on the Office-31 dataset. As illustrated in Fig. 1(c), the results of our method are stable
under a wide range of τ , i.e. τ ∈ [0.3, 0.6], and they show consistent improvement over the results
of Source Only, justifying the efficacy and robustness of our proposed method.

Analysis on Different Settings of ξ-UDA We compare the results of DETECT and UAN [47]
under different degrees of label space overlap between source and target domains on the A to W
task of the Office-31 dataset, as illustrated in Fig. 3. First, given a fixed |Yst| = 10 and ξ, we
compare results of different methods on the ξ-UDA with various sizes of source private classes,
i.e. |Ys/t|, where |Yt/s| changes correspondingly. As illustrated in Fig. 3(a), our DETECT
outperforms UAN [47] on most of the sizes of |Ys/t|. In Figs. 3(b) and 3(c), we evaluate the
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Method Office-31 ImageNet-Caltech VisDA
A2W D2W W2D A2D D2A W2A Avg. Im2Cal Cal2Im

Source Only [47] 75.94 89.60 90.91 80.45 78.83 81.42 82.86 70.28 65.14 52.80
DANN[11] 80.65 80.94 88.07 82.67 74.82 83.54 81.78 71.37 66.54 52.94
RTN[29] 85.70 87.80 88.91 82.69 74.64 83.26 84.18 71.94 66.15 53.92

IWAN[48] 85.25 90.09 90.00 84.27 84.22 86.25 86.68 72.19 66.48 58.72
PADA[7] 85.37 79.26 90.91 81.68 55.32 82.61 79.19 65.47 58.73 44.98

ATI[4] 79.38 92.60 90.08 84.40 78.85 81.57 84.48 71.59 67.36 54.81
OSBP[38] 66.13 73.57 85.62 72.92 47.35 60.48 67.68 62.08 55.48 30.26
UAN[47] 85.62 94.77 97.99 86.50 85.45 85.12 89.24 75.28 70.17 60.83

Method in [26] 90.25 95.25 96.96 88.84 90.19 89.30 91.80 76.13 74.67 64.31
DANCE [35] 92.8 97.8 97.7 91.6 92.2 91.4 93.9 - - 69.2
DETECT 94.43 96.87 96.31 94.69 91.08 92.06 94.24 78.52 76.81 71.38

Table 3: Average class accuracy (%) on datasets of Office-31, ImageNet-Caltech, and VisDA2017.

C2I C2P C2B I2C I2P I2B P2C P2I P2B B2C B2I B2P Avg.
Source Only 81.43 72.21 58.86 87.90 76.90 58.38 85.33 80.19 55.05 87.90 77.14 67.72 74.08
UAN [47] 79.81 70.38 57.33 84.00 72.97 58.00 81.33 77.52 54.10 80.77 72.57 64.27 71.09
DETECT 89.05 75.34 61.24 92.00 78.20 60.57 90.38 86.10 60.67 94.00 88.00 74.21 79.15

Table 4: Average class accuracy (%) on the ImageCLEF-DA dataset. The results of UAN [47] are
reproduced with its public code.

results by changing the size of |Yst| with the fixed conditions of |Ys/t| = 10 and |Yt| = |Ys| + 1,
respectively. In most cases, our method outperforms UAN significantly, certifying the efficacy of our
proposed DETECT . When |Yst| = 0, i.e. no classes are shared across domains, our DETECT
improves over UAN by a large margin, justifying the robustness of our DETECT in this extreme
case. Note that comparisons between our DETECT and UAN on existing closed set, partial and
open set UDA are included here. Specifically, the partial UDA [6] is met when |Ys/t| = 21 in Fig.
3(a) and |Yst| = 21 in Fig. 3(b). The open set UDA [38] is met when |Ys/t| = 0 in Fig. 3(a), and
the closed set domain adaptation is a special case when |Yst| = 31 in Fig. 3(c).

5.2 Results

We compare our DETECT with state-of-the-art UDA methods for the task of ξ-UDA on the
datasets of Office-31, ImageNet-Caltech, VisDA2017 and the ImageCLEF dataset, as illustrated
in Tab. 3 and Tab. 4, respectively. Results of other methods are quoted from [47], [26] and [35].
As illustrated, the methods proposed for the closed set UDA (DANN [11] and RTN [29]), the par-
tial UDA (IWAN[48] and PADA[7]) and the open set UDA (ATI[4] and OSBP[38]) do not perform
well on the task of ξ-UDA, since their prior assumptions about the label space are violated. Some
of these methods, such as the PADA [7] and OSBP [38], present worse results than the baseline
of Source Only, indicating the presence of negative transfer. This phenomenon also occurs in the
method of UAN when evaluating on the ImageCLEF-DA dataset, as illustrated in Tab. 4. Our pro-
posed DETECT improves over the baseline of Source Only consistently, and it achieves better
results than the specific methods of ξ-UDA [47, 26, 35] in all four datasets and most of the tasks,
certifying its efficacy.

6 Conclusion

In this paper, we contribute a novel perspective to unsupervised and universal domain adaptation (ξ-
UDA). We argue that no matter what the degrees of the label space overlap are, the problem nature of
UDA remains unchanged in two principles: (1) to learn the intrinsic discrimination of target data in
an unsupervised manner, regularized by the labeled discrimination of source data and (2) to reduce
contamination of the intrinsic target discrimination during the source regularization. Based on that,
we provide the simple but strong baseline of DETECT for ξ-UDA. Experiments show that such a
simple baseline can work effectively across a range of label space overlaps, and it outperforms all
existing methods on four classic domain adaptation benchmarks.
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Broader Impact

When applying an object recognition system in the wild, there usually exist both domain and catego-
ry gaps between the training and target images. Our proposed method can seamlessly apply to this
situation. Moreover, by preserving the intrinsic structure of target discrimination during the source
regularization, our proposed method can better detect instances of unknown categories and predict
more accurately the instances of training categories. This technology can be positively used in many
applications. For example, it can be used to automatically label the target pictures as an unknown
label or a specific label from the training data. When we found that if the recognition system labels
most of the targets with unknown, then it can guide us to provide more labelling information of such
data into the system. However, negative impact may arise if the technology is abused. We encour-
age future work to mitigate the risks arising from, e.g., medical recognition applications. Also, we
expect that the policymakers to take active actions to penalize the misuse of such technologies.
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